224 research outputs found

    An Application-Tailored MAC Protocol for Wireless Sensor Networks

    Get PDF
    We describe a data management framework suitable for wireless sensor networks that can be used to adapt the performance of a medium access control (MAC) protocol depending on the query injected into the network. The framework has a\ud completely distributed architecture and only makes use of information available locally to capture information about network traffic patterns. It allows\ud nodes not servicing a query to enter a dormant mode which minimizes transmissions and yet maintain an updated view of the network. We then introduce an Adaptive, Information-centric and Lightweight MAC\ud (AI-LMAC) protocol that adapts its operation depending on the information presented by the framework. Our results demonstrate how transmissions are greatly reduced during the dormant mode. During the active mode, the MAC\ud protocol adjusts fairness to match the expected requirements of the query thus reducing latency. Thus such a data management framework allows the MAC to operate more efficiently by tailoring its needs to suit the requirements of the application

    Pushing the Frontiers of Cross-layer Optimization in Wireless Sensor Networks Right up to the Application Layer

    Get PDF
    Unlike conventional computer networks such as office LANs or the Internet which can be used for a host of applications, wireless sensor networks are typically used for specific applications in mind. It is this fundamental difference combined with the fact that energy efficiency is of paramount importance in wireless sensor networks that a different approach needs to be taken when designing protocols. In this paper we first describe the main differences and benefits of the cross-layered techniques used for sensor networks over the traditional OSI layered approach used for conventional networks. We then give two examples which illustrate how we extend usual sensor network cross-layered optimization by going beyond just MACrouting optimizations to optimizations between the application and the MAC layers

    Introduction to wireles sensor networks

    Get PDF

    Architectures for wireless sensor networks

    Get PDF
    The vision of ubiquitous computing requires the development of devices and technologies that can be pervasive without being intrusive. The basic component of such a smart environment will be a small node with sensing and wireless communications capabilities, able to organize itself flexibly into a network for data collection and delivery. Building such a sensor network presents many significant challenges, especially at the architectural, protocol, and operating system level. Although sensor nodes might be equipped with a power supply or energy scavenging means and an embedded processor that makes them autonomous and self-aware, their functionality and capabilities will be very limited. Therefore, collaboration between nodes is essential to deliver smart services in a ubiquitous setting. New algorithms for networking and distributed collaboration need to be developed. These algorithms will be the key for building self-organizing and collaborative sensor networks that show emergent behavior and can operate in a challenging environment where nodes move, fail, and energy is a scarce resource. The question that rises is how to organize the internal software and hardware components in a manner thatwill allowthem towork properly and be able to adapt dynamically to new environments, requirements, and applications. At the same time the solution should be general enough to be suited for as many applications as possible. Architecture definition also includes, at the higher level, a global view of the whole network. The topology, placement of base stations, beacons, etc. is also of interest. In this chapter, we will present and analyze some of the characteristics of the architectures for wireless sensor networks. Then, we will propose a new dataflow-based architecture that allows, as a new feature, the dynamic reconfiguration of the sensor nodes software at runtime

    Private hospital workflow optimization via secure k-means clustering

    Get PDF
    Optimizing the workflow of a complex organization such as a hospital is a difficult task. An accurate option is to use a real-time locating system to track locations of both patients and staff. However, privacy regulations forbid hospital management to assess location data of their staff members. In this exploratory work, we propose a secure solution to analyze the joined location data of patients and staff, by means of an innovative cryptographic technique called Secure Multi-Party Computation, in which an additional entity that the staff members can trust, such as a labour union, takes care of the staff data. The hospital, owning location data of patients, and the labour union perform a two-party protocol, in which they securely cluster the staff members by means of the frequency of their patient facing times. We describe the secure solution in detail, and evaluate the performance of our proof-of-concept. This work thus demonstrates the feasibility of secure multi-party clustering in this setting

    Contact Hypersensitivity to Oxazolone Provokes Vulvar Mechanical Hyperalgesia in Mice

    Get PDF
    The interplay among pain, allergy and dysregulated inflammation promises to yield significant conceptual advances in immunology and chronic pain. Hapten-mediated contact hypersensitivity reactions are used to model skin allergies in rodents but have not been utilized to study associated changes in pain perception in the affected skin. Here we characterized changes in mechanical hyperalgesia in oxazolone-sensitized female mice challenged with single and repeated labiar skin exposure to oxazolone. Female mice were sensitized with topical oxazolone on their flanks and challenged 1-3 times on the labia. We then measured mechanical sensitivity of the vulvar region with an electronic pressure meter and evaluated expression of inflammatory genes, leukocyte influx and levels of innervation in the labiar tissue. Oxazolone-sensitized mice developed vulvar mechanical hyperalgesia after a single labiar oxazolone challenge. Hyperalgesia lasted up to 24 hours along with local influx of neutrophils, upregulation of inflammatory cytokine gene expression, and increased density of cutaneous labiar nerve fibers. Three daily oxazolone challenges produced vulvar mechanical hyperalgesic responses and increases in nerve density that were detectable up to 5 days post-challenge even after overt inflammation resolved. This persistent vulvar hyperalgesia is resonant with vulvodynia, an understudied chronic pain condition that is remarkably prevalent in 18-60 year-old women. An elevated risk for vulvodynia has been associated with a history of environmental allergies. Our pre-clinical model can be readily adapted to regimens of chronic exposures and long-term assessment of vulvar pain with and without concurrent inflammation to improve our understanding of mechanisms underlying subsets of vulvodynia and to develop new therapeutics for this condition

    Common Fixed Point Results on Generalized Weak Compatible Mapping in Quasi-Partial b-Metric Space

    Full text link
    [EN] The focus of this paper is to acquaint with generalized condition (B) in a quasi-partial b-metric space and to establish coincidence and common fixed point theorems for weakly compatible pairs of mapping. Additionally, with the background of quasi-partial b-metric space, the outcomes obtained are exemplified to prove the existence and uniqueness of fixed point.Gautam, P.; SĂĄnchez Ruiz, LM.; Verma, S.; Gupta, G. (2021). Common Fixed Point Results on Generalized Weak Compatible Mapping in Quasi-Partial b-Metric Space. Journal of Mathematics. 2021:1-10. https://doi.org/10.1155/2021/5526801S110202
    • 

    corecore